Introduction to Linux Shell
Scripting

Learn to Automate Tasks and Write Ef-
ficient Shell Scripts with Real-World
Examples

Preface

In today's technology-driven world, the ability to automate tasks and streamline
workflows has become an essential skill for anyone working with Linux systems.
Whether you're a system administrator managing hundreds of servers, a developer
deploying applications, or an enthusiast exploring the depths of Linux, shell script-
ing serves as your gateway to unlocking the true power of the Linux command line.

Introduction to Linux Shell Scripting is designed to transform you from
someone who occasionally types commands into the Linux terminal into a confi-
dent script writer who can automate complex tasks with elegant, efficient solutions.
This book recognizes that Linux shell scripting isn't just about writing code—it's
about thinking systematically, solving problems creatively, and harnessing the in-
credible flexibility that makes Linux the backbone of modern computing in-

frastructure.

Why This Book Matters

Linux powers everything from smartphones and embedded devices to the world's
largest supercomputers and cloud platforms. At the heart of Linux lies the shell-a
powerful interface that allows you to communicate directly with the operating sys-
tem. While graphical interfaces have their place, the Linux shell remains un-
matched in its ability to perform complex operations, process large datasets, and
automate repetitive tasks with precision and speed.

This book bridges the gap between basic Linux command-line usage and ad-

vanced system automation. You'll discover how to write shell scripts that can

process files, manage system resources, parse data, and orchestrate complex work-

flows—all within the rich ecosystem of Linux tools and utilities.

What You'll Learn

Throughout these pages, you'll embark on a carefully structured journey that be-
gins with Linux command-line fundamentals and progresses to sophisticated
scripting techniques. Starting with The Linux Command Line, you'll build a solid
foundation before diving into script creation, variable manipulation, and control
structures. The book emphasizes practical, real-world applications, ensuring that
every concept you learn can be immediately applied to actual Linux environments.

Key areas covered include:

- Fundamental Linux scripting concepts and best practices

- Automation techniques for common Linux administrative tasks
- Text processing and data manipulation using Linux tools

- Error handling and debugging in Linux shell environments

- Clean coding practices for maintainable Linux scripts

Each chapter builds upon the previous one, culminating in comprehensive projects
that demonstrate how to combine multiple concepts into powerful Linux au-

tomation solutions.

How This Book Is Structured

The book follows a progressive learning approach, starting with essential Linux

command-line skills and gradually introducing more complex scripting concepts.

Early chapters focus on syntax and basic operations, while later chapters tackle ad-
vanced topics like debugging, code organization, and real-world automation sce-
narios specific to Linux environments.

The appendices provide valuable reference materials, including a comprehen-
sive Bash command cheat sheet, ready-to-use script templates, interview questions
for Linux-focused roles, and curated resources for continued learning in the Linux

ecosystem.

Who Should Read This Book

This book is written for anyone who wants to harness the automation capabilities of
Linux shell scripting. Whether you're a Linux system administrator, a developer
working in Linux environments, a DevOps engineer, or simply someone curious
about the power of Linux automation, you'll find practical value in these pages. No
prior scripting experience is required—just a basic familiarity with the Linux com-

mand line and a desire to learn.

Acknowledgments

This book exists thanks to the vibrant Linux and open-source community that has
continuously pushed the boundaries of what's possible with shell scripting. The ex-
amples, techniques, and best practices presented here have been refined through
years of real-world Linux system administration and development experience. Spe-
cial recognition goes to the maintainers of Bash and the countless contributors to

Linux documentation who have made this knowledge accessible to all.

Your Journey Begins

As you turn to the first chapter, remember that mastering Linux shell scripting is not
just about memorizing syntax—it's about developing a mindset for automation and
efficiency. Each script you write will make you more productive and give you deep-
er insight into how Linux systems operate. Welcome to the world of Linux shell
scripting, where the command line becomes your most powerful tool for getting
things done.

Happy scripting!

Miles Everhart

Table of Contents

Chapter

Intro

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
App
App
App
App

Title

Introduction

The Linux Command Line

Writing Your First Script

Working with Variables

Input and Output

Conditional Logic

Loops and Repetition

Functions in Shell Scripts

Working with Strings and Numbers
Arrays and Loops

File and Directory Operations
Automating Tasks

Parsing and Text Processing
Debugging Shell Scripts

Writing Clean and Maintainable Code
Final Projects

Bash Command Cheat Sheet

Shell Script Templates

Page

7
19
35
50
66
87
109
128
148
164
180
200
223
238
255
275
315
331

Interview Questions for Shell Scripting Roles 361

Online Resources and Documentation

396

Introduction

The Gateway to Linux Automation and
Power

In the vast landscape of computing, few skills are as transformative and empower-
ing as mastering Linux shell scripting. Whether you are a system administrator
managing hundreds of servers, a developer seeking to streamline deployment
processes, or an enthusiast exploring the depths of Linux functionality, shell script-
ing serves as your gateway to unprecedented automation and control over your
Linux environment.

Linux shell scripting represents more than just writing commands in sequence;
it embodies the philosophy of Linux itself - the belief that users should have com-
plete control over their computing environment. Through shell scripting, you trans-
form from a passive user of Linux commands into an active architect of automated

solutions, capable of orchestrating complex workflows with elegant simplicity.

Understanding the Linux Shell Envi-
ronment

The Linux shell serves as the command-line interface between you and the Linux
kernel, acting as both an interpreter for your commands and a powerful program-

ming environment. When you open a terminal in any Linux distribution - whether

it's Ubuntu, CentOS, Debian, Fedora, or Arch Linux - you are immediately greeted
by the shell prompt, a seemingly simple cursor that represents unlimited potential
for automation and system control.

The most commonly used shell in Linux environments is Bash (Bourne Again
Shell), which has become the de facto standard across virtually all Linux distribu-
tions. Bash provides a rich programming environment that combines the simplicity
of command-line operations with the sophistication of a full-featured programming
language. Other shells available in Linux include Zsh (Z Shell), Fish (Friendly Inter-
active Shell), and the original Bourne Shell, each offering unique features while
maintaining compatibility with core shell scripting principles.

Check your current shell
echo S$SHELL

List available shells on your Linux system
cat /etc/shells

Display shell version information

bash --version

Note: The $SHELL environment variable contains the path to your current shell. On

most Linux systems, this will display /bin/bash, indicating you are using the Bash

shell.

The Evolution and Philosophy of Shell
Scripting in Linux

Shell scripting in Linux has evolved from the early days of Unix, carrying forward
decades of refinement and optimization. The concept emerged from the need to

automate repetitive tasks and combine simple utilities into powerful workflows.

This philosophy aligns perfectly with the Unix and Linux principle of creating small,
focused tools that can be combined to accomplish complex tasks.

In the Linux ecosystem, shell scripting serves as the glue that binds together
the thousands of utilities and commands available in a typical Linux installation.
Rather than requiring users to learn complex programming languages for simple
automation tasks, Linux provides shell scripting as an accessible yet powerful solu-
tion that leverages the same commands you use interactively at the command line.

The beauty of Linux shell scripting lies in its progressive learning curve. You
can begin with simple command sequences and gradually incorporate advanced
programming constructs such as conditional statements, loops, functions, and
complex data processing. This approach allows both newcomers and experienced
users to benefit immediately while providing a pathway for continuous skill devel-

opment.

Core Components of the Linux Shell
Scripting Environment

Command Execution and Process Management

Linux shell scripting operates within the broader context of the Linux process mod-
el. When you execute a shell script, the Linux kernel creates a new process that in-
herits the environment of its parent shell. This process model enables powerful fea-
tures such as background execution, process communication, and resource man-

agement that are fundamental to effective shell scripting.

Basic command execution in a script
#!/bin/bash

echo "Starting system information gathering..."
uname -a
date

whoami

Command Explanation: The #!/bin/bash line, known as a shebang, tells the
Linux kernel which interpreter to use for executing the script. The uname -a com-
mand displays comprehensive system information, date shows the current date

and time, and whoami displays the current username.

Variables and Environment Management

Linux shell scripting provides sophisticated variable handling capabilities that inte-
grate seamlessly with the Linux environment variable system. Shell variables can
store command output, user input, configuration parameters, and complex data
structures, enabling dynamic script behavior based on system conditions and user
requirements.

#!/bin/bash

System information script with variables

HOSTNAME=S (hostname)

CURRENT USER=S$ (whoami)

SYSTEM LOAD=$ (uptime | awk '{print $10}")
DISK USAGE=S(df -h / | awk 'NR==2 {print $5}")

echo "System Report for Linux Host: S$HOSTNAME"
echo "Current User: SCURRENT USER"

echo "System Load: S$SSYSTEM LOAD"

echo "Root Disk Usage: SDISK USAGE"

Note: The $(command) syntax performs command substitution, executing the
command and capturing its output as a variable value. This is a fundamental tech-

nique in Linux shell scripting for dynamic data collection.

10

File System Integration

One of the most powerful aspects of Linux shell scripting is its deep integration
with the Linux file system. Scripts can easily navigate directory structures, manipu-
late files and permissions, monitor file system changes, and perform complex file

operations that would require extensive programming in other environments.
#!/bin/bash
File system monitoring script

LOG DIR="/var/log"
BACKUP DIR="/home/backup"

Check if directories exist

if [-d "SLOG DIR"]; then
echo "Log directory exists: SLOG DIR"
LOG _COUNT=$ (find "SLOG DIR" -name "*.log" | wc -1)
echo "Found $LOG COUNT log files"

else

echo "Warning: Log directory not found"
fi

Create backup directory if it doesn't exist
if [! -d "$BACKUP_DIR" 1; then

mkdir -p "$BACKUP_DIR"

echo "Created backup directory: SBACKUP DIR"
fi

Command Explanation: The [-d "$LOG DIR"] test checks if the specified
path is a directory. The find command searches for files matching the pattern
*.log, and wc -1 counts the number of lines (files) found. The mkdir -p com-

mand creates directories recursively, including parent directories if they don't exist.

11

Practical Applications in Linux Environ-
ments

System Administration and Maintenance

Linux shell scripting excels in system administration tasks, providing administrators
with tools to automate routine maintenance, monitor system health, and respond
to various system conditions. These scripts can perform tasks ranging from simple

log rotation to complex multi-server deployment orchestration.

#!/bin/bash
System maintenance script

\}

echo "Starting Linux system maintenance routine...'

Update package database (Ubuntu/Debian)
if command -v apt-get &> /dev/null; then

echo "Updating package database..."
sudo apt-get update -gg

fi

Clean temporary files

echo "Cleaning temporary files..."

sudo find /tmp -type f -atime +7 -delete
sudo find /var/tmp -type f -—-atime +7 -delete

Check disk space
echo "Checking disk space..."
df -h | awk '$5+0 > 80 {print "Warning: " $1 " is " $5 " full"}'

Display memory usage

echo "Current memory usage:"

free -h

Note: The command -v test checks if a command exists in the system PATH. The

awk command processes the df output to identify filesystems that are more than

12

80% full, demonstrating how Linux shell scripting can combine multiple utilities for

intelligent system monitoring.

Development and Deployment Workflows

In Linux development environments, shell scripting serves as the backbone for

build systems, continuous integration pipelines, and deployment automation.

Scripts can compile code, run tests, package applications, and deploy them across

multiple Linux servers with consistent reliability.

#!/bin/bash

Simple deployment script for Linux applications
APP NAME="myapp"

BUILD DIR="/home/developer/builds"

DEPLOY DIR="/opt/applications"

LOG FILE="/var/log/deployment.log"

echo "S$(date): Starting deployment of SAPP NAME" >> "SLOG FILE"

Build application
cd "$BUILD_DIR" || exit 1

make clean && make all

if [$? -eq 0]; then

echo "Build successful, proceeding with deployment”

Stop existing service
sudo systemctl stop "SAPP NAME" 2>/dev/null

Copy new binary
sudo cp "$BUILD7DIR/$APP7NAME" "$DEPLOY7DIR/"
sudo chmod +x "$DEPLOY_DIR/$APP_NAME"

Start service
sudo systemctl start "SAPP NAME"

echo "$ (date): Deployment completed successfully" >>
"$LOG_FILE"

13

else

echo "$(date): Build failed, deployment aborted" >>
"$SLOG FILE"

exit 1
fi

Command Explanation: The $? variable contains the exit status of the last execut-
ed command. The 2>/dev/null redirects error output to prevent unnecessary er-

ror messages. The systemctl commands manage Linux system services, demon-

strating integration with the Linux service management system.

Advanced Concepts and Integration

Process Communication and Inter-Process Commu-
nication

Linux shell scripting provides sophisticated mechanisms for process communica-
tion, including pipes, named pipes (FIFOs), signals, and shared files. These features
enable complex workflows where multiple processes collaborate to accomplish so-

phisticated tasks.

#!/bin/bash
Process communication example

PIPE NAME="/tmp/monitor pipe"

Create named pipe if it doesn't exist
if [! -p "$PIPE_NAME"]; then

mkfifo "SPIPE NAME"
fi

Function to monitor system resources

monitor system() {

while true; do

14

echo "$(date): CPU: $(top -bnl | grep "Cpu(s)" | awk
'"{print S21")" > "$PIPE_NAME"
sleep 5

done

Function to log monitoring data
log monitor () {
while read -r line; do
echo "S$line" >> /var/log/system monitor.log
done < "$PIPE_NAME"

Start monitoring in background
monitor system &
MONITOR PID=$!

Start logging
log monitor &
LOG_PID=$!

echo "Monitoring started with PIDs: Monitor=SMONITOR PID,
Logger=$LOG PID"

Note: Named pipes (FIFOs) provide a mechanism for inter-process communication
in Linux. The mkfifo command creates a named pipe, and the & operator runs

commands in the background, allowing multiple processes to operate concurrent-

ly.

Integration with Linux System Services

Modern Linux shell scripting often integrates with systemd, the init system used by
most contemporary Linux distributions. Scripts can interact with system services,
manage service dependencies, and respond to system events through systemd in-

tegration.

#!/bin/bash

15

Service management script
SERVICE_NAME="nginx"

CONFIG FILE="/etc/nginx/nginx.conf"
BACKUP DIR="/etc/nginx/backups"

Function to backup configuration
backup config() {
local timestamp=S$ (date +%Y%m%d %H3M%S)
local backup file="SBACKUP DIR/nginx S$timestamp.conf"

mkdir -p "$BACKUP_DIR"
cp "SCONFIG FILE" "Sbackup file"
echo "Configuration backed up to: Sbackup file"

Function to validate configuration
validate config() {
nginx -t 2>/dev/null

return $°?

Function to reload service safely
safe reload() {
backup config

if validate config; then
echo "Configuration valid, reloading service...
sudo systemctl reload "SSERVICE NAME"

AL

if [$? -eq 0]; then
echo "Service reloaded successfully"
else
echo "Failed to reload service"
return 1
fi
else
echo "Configuration validation failed, reload aborted"
return 1
fi

Execute safe reload

safe reload

Command Explanation: The nginx -t command tests the Nginx configuration
syntax without starting the service. The systemctl reload command sends a re-
load signal to the service, which is safer than restarting as it maintains existing con-

nections while applying configuration changes.

Learning Path and Skill Development

Mastering Linux shell scripting is a journey that progresses through several distinct
phases, each building upon the previous level of understanding. Beginning with
basic command sequences and variable usage, you will gradually incorporate ad-
vanced programming constructs, error handling, and integration with complex Lin-
ux subsystems.

The initial phase focuses on understanding the Linux command-line environ-
ment, basic script structure, and simple automation tasks. This foundation provides
immediate practical value while establishing the conceptual framework for more
advanced techniques.

The intermediate phase introduces programming constructs such as condition-
al statements, loops, functions, and array handling. At this level, you begin creating
scripts that can make decisions, process data sets, and respond dynamically to
changing conditions.

The advanced phase encompasses complex topics such as process manage-
ment, inter-process communication, signal handling, and integration with Linux
system services. Advanced practitioners can create sophisticated automation

frameworks that rival purpose-built applications in functionality and reliability.

17

Conclusion

Linux shell scripting represents one of the most valuable and versatile skills in the
modern computing landscape. It provides a direct pathway to harness the full pow-
er of Linux systems, enabling automation, customization, and control that trans-
forms how you interact with and manage Linux environments.

As you embark on this journey through Linux shell scripting, remember that
every expert began with simple commands and basic scripts. The key to mastery
lies in consistent practice, experimentation, and gradual expansion of your script-
ing vocabulary. Each script you write, regardless of its complexity, contributes to
your understanding of Linux systems and your ability to create elegant automated
solutions.

The following chapters will guide you through this progression, providing de-
tailed explanations, practical examples, and real-world scenarios that demonstrate
the power and flexibility of Linux shell scripting. You will discover how to transform
repetitive tasks into automated workflows, create robust system administration
tools, and develop the confidence to tackle complex automation challenges with
creativity and precision.

Through dedicated study and practice, you will join the ranks of Linux users
who have discovered that shell scripting is not merely a technical skill, but a power-
ful means of expressing ideas, solving problems, and achieving unprecedented ef-
ficiency in Linux environments. The journey begins with understanding, continues
with practice, and culminates in the mastery that enables you to shape your Linux

environment according to your vision and requirements.

18

Chapter 1: The Linux Com-
mand Line

Understanding the Foundation of Shell
Scripting

The Linux command line represents the gateway to one of the most powerful com-
puting environments ever created. Unlike graphical user interfaces that limit users
to predetermined actions through buttons and menus, the command line offers di-
rect communication with the operating system kernel through a sophisticated text-
based interface. This chapter establishes the fundamental knowledge required to
navigate and master the Linux command line, serving as the essential foundation
for all shell scripting endeavors.

When you first encounter a Linux terminal, you are presented with what ap-
pears to be a simple black screen containing a cursor and a prompt. However, this
seemingly austere interface conceals extraordinary power and flexibility. The com-
mand line interface, often abbreviated as CLI, provides access to thousands of utili-
ties, programs, and system functions that can be combined in virtually infinite ways
to accomplish complex tasks.

The relationship between the command line and shell scripting is symbiotic
and inseparable. Every shell script is essentially a collection of command line in-
structions organized into a structured format that can be executed automatically.

Therefore, mastering the command line is not merely helpful for shell scripting—it is

19

absolutely essential. Without a solid understanding of individual commands, their
options, and how they interact with the system, writing effective shell scripts be-

comes impossible.

The Shell: Your Interface to the Operat-
ing System

The shell serves as the intermediary between human users and the Linux kernel.
When you type commands at the prompt, the shell interprets these instructions,
communicates with the kernel to execute them, and returns the results to your ter-
minal. This process happens seamlessly and instantaneously, creating the illusion
of direct communication with the computer.

Several different shells exist in the Linux ecosystem, each with unique charac-
teristics and capabilities. The Bourne Again Shell, commonly known as Bash, has
emerged as the most widely used and is the default shell on most Linux distribu-
tions. Bash combines the features of the original Bourne shell with enhancements

from the C shell and Korn shell, creating a powerful and user-friendly environment.

Check which shell you are currently using
echo $SHELL

Display available shells on your system
cat /etc/shells

Switch to a different shell temporarily
bash

zsh

fish

Notes:

- The $SHELL environment variable contains the path to your current shell

20

- The /etc/shells file lists all shells installed on the system

- Different shells have varying syntax and features for scripting

Other popular shells include Zsh (Z Shell), which offers advanced auto-completion
and customization options, Fish (Friendly Interactive Shell), known for its user-
friendly features and syntax highlighting, and Dash (Debian Almquist Shell), a light-
weight shell optimized for script execution. Understanding these alternatives helps
you appreciate Bash's position in the ecosystem and prepares you for environ-
ments where different shells might be preferred.

The shell maintains several important responsibilities beyond simple command
execution. It manages environment variables, handles input and output redirection,
processes command history, performs filename expansion through globbing, and
provides job control for managing multiple processes. These features transform
the shell from a simple command interpreter into a sophisticated programming en-

vironment.

Essential Command Line Navigation

Navigation forms the cornerstone of command line proficiency. The Linux filesys-
tem follows a hierarchical structure beginning with the root directory, represented
by a forward slash. Every file and directory in the system exists within this tree-like
structure, and understanding how to move through it efficiently is crucial for effec-

tive command line usage.

Display current working directory

pwd

List contents of current directory
1s

21

List with detailed information
1s -1

List including hidden files
1s -1la

List with human-readable file sizes
ls -1h

Change to home directory
cd
cd ~

Change to specific directory
cd /etc
cd /var/log

Move up one directory level
cd

Move up multiple directory levels

cd ../../

Return to previous directory
cd -

Command Explanations:

- pwd (Print Working Directory): Shows the absolute path of your current
location

- 1s (List): Displays directory contents with various formatting options

- cd (Change Directory): Navigates between directories using absolute or
relative paths

- Thetilde (~) represents your home directory

- Double dots (. .) represent the parent directory

- The dash (=) returns you to the previously visited directory

22

The concept of absolute versus relative paths is fundamental to navigation. Abso-
lute paths begin with the root directory and specify the complete location of a file
or directory from the filesystem root. Relative paths, conversely, specify locations
relative to your current working directory. Mastering both approaches allows for ef-
ficient navigation regardless of your current position in the filesystem.

Directory navigation becomes more powerful when combined with tab com-
pletion, a feature that automatically completes partially typed paths and filenames.
This functionality not only saves typing time but also helps prevent errors and al-

lows you to explore directory contents without explicitly listing them.

File and Directory Operations

Effective file and directory management requires familiarity with commands that
create, copy, move, and delete filesystem objects. These operations form the basis
of most system administration tasks and are frequently used in shell scripts to ma-

nipulate data and organize system resources.

Create new directory

mkdir new directory

Create nested directories

mkdir -p path/to/nested/directory

Create multiple directories
mkdir dirl dir2 dir3

Remove empty directory

rmdir empty directory

Remove directory and contents recursively

rm -rf directory name

Create empty file

23

touch new file.txt

Copy file

cp source file.txt destination file.txt

Copy directory recursively

cp -r source directory destination directory

Move or rename file

mv old name.txt new name.txt

Move file to different directory
mv file.txt /path/to/destination/

Remove file

rm file.txt

Remove multiple files with confirmation
rm —-i filel.txt file2.txt

Find files by name

find /path -name "filename"

Find files by type
find /path -type f —-name "*.txt"

Important Safety Notes:

- The rm command permanently deletes files and directories
- Use rm -1i for interactive deletion with confirmation prompts
- The -r flag enables recursive operations on directories

- Always verify paths before executing destructive operations

File permissions represent another critical aspect of file operations. Linux imple-
ments a sophisticated permission system that controls read, write, and execute ac-
cess for owners, groups, and others. Understanding and manipulating these per-

missions is essential for system security and proper script execution.

24

Display file permissions

ls -1 filename

Change file permissions using numeric notation

chmod 755 script.sh

Change file permissions using symbolic notation
chmod u+x script.sh
chmod g+w filename

chmod o-r filename

Change file ownership

chown user:group filename

Change group ownership only

chgrp groupname filename
Permission System Explanation:

- Read (r/4): Allows viewing file contents or listing directory contents

- Write (w/2): Permits modifying file contents or creating/deleting files in
directories

- Execute (x/1): Enables running files as programs or accessing directories

- Permissions are set separately for user (owner), group, and others

- Numeric notation uses the sum of permission values (4+2+1=7 for full

permissions)

Text Processing and File Content Ex-
amination

Linux provides an extensive collection of tools for examining and processing text

files. These utilities form the foundation of data processing in shell scripts and en-

25

able powerful text manipulation capabilities that surpass those available in many

specialized applications.

Display file contents

cat filename.txt

Display file contents with line numbers

cat -n filename.txt

Display first 10 lines of file

head filename.txt

Display first 20 lines of file
head -n 20 filename.txt

Display last 10 lines of file

tail filename.txt

Monitor file for new content (useful for logs)

tail -f /var/log/syslog
Display file contents one screen at a time
less filename.txt

more filename.txt

Count lines, words, and characters

wc filename.txt

Count only lines

wc -1 filename.txt

Search for patterns in files

grep "pattern" filename.txt

Search case-insensitively

grep -1 "pattern" filename.txt

Search recursively in directories

grep -r "pattern" /path/to/directory

Display lines containing pattern with line numbers

26

grep -n "pattern" filename.txt
Text Processing Command Details:

- cat: Concatenates and displays file contents, suitable for small files

- head and tail: Display beginning or end portions of files respectively

- less and more: Provide paginated viewing for large files with naviga-
tion controls

- wc: Word count utility that provides statistics about file contents

- grep: Global Regular Expression Print, searches for patterns using regu-

lar expressions

Advanced text processing involves combining multiple commands using pipes
and redirection. This approach allows you to create powerful data processing pipe-

lines that filter, sort, and transform text data in sophisticated ways.

Combine commands using pipes

cat filename.txt | grep "pattern" | wc -1

Sort file contents

sort filename.txt

Sort numerically

sort -n numbers.txt

Remove duplicate lines

sort filename.txt | unig

Count occurrences of each unique line

sort filename.txt | unig -c

Extract specific columns from delimited data
cut -d',' -f2 data.csv

Replace text patterns
sed 's/old text/new text/g' filename.txt

27

Process text with awk

awk '{print $1}' filename.txt

Input/Output Redirection and Pipes

Input and output redirection represents one of the most powerful features of the

Linux command line. This capability allows you to control where commands receive

their input and send their output, enabling the creation of complex data process-

ing workflows and automated systems.

Redirect output to file (overwrite)

command > output.txt

Redirect output to file (append)

command >> output.txt

Redirect error output to file

command 2> error.log

Redirect both output and errors to file
command > output.txt 2>&1

Redirect both output and errors to same file

command &> output.txt

Redirect input from file

command < input.txt

Use here document for multi-line input
command << EOF

Line 1

Line 2

Line 3

EOF

Pipe output from one command to another

commandl | command?2

(bash 4.0+)

28

Chain multiple commands with pipes

commandl | command?2 | command3

Tee output to file and stdout simultaneously

command | tee output.txt

Append tee output to file

command | tee —-a output.txt
Redirection Operators Explained:

>: Redirects stdout to file, overwriting existing content

- >>: Redirects stdout to file, appending to existing content
- 2>: Redirects stderr (error output) to file
- <:Redirects file content as stdin to command

- |: Pipes stdout of first command as stdin to second command

tee: Splits output stream, sending copies to both file and stdout

Understanding file descriptors enhances your ability to control input and output
streams. Linux assigns numeric identifiers to standard streams: 0 for stdin (standard
input), 1 for stdout (standard output), and 2 for stderr (standard error). This knowl-

edge allows for precise control over where different types of output are directed.

Process Management and Job Control

The Linux command line provides comprehensive tools for managing processes
and controlling job execution. These capabilities are essential for system adminis-
tration and become particularly important when writing shell scripts that need to
manage multiple tasks or long-running operations.

Display running processes

rs

29

Display detailed process information

ps aux

Display processes in tree format

ps auxf

Display real-time process information

top

Display processes for current user
ps -u $USER

Find processes by name

pgrep process name

Kill process by PID
kill 1234

Kill process by name

killall process name

Force kill process
kill -9 1234

Run command in background

command &

List background jobs
jobs

Bring background job to foreground
fg %1

Send foreground Jjob to background
(First press Ctrl+Z to suspend, then:)

bg %1

Disconnect process from terminal

nohup command &

Monitor system resources

30

htop
iostat

vmstat
Process Management Concepts:

- PID (Process ID): Unique numeric identifier for each running process

- Background jobs: Processes that run without blocking the terminal

- Job control: Managing multiple processes within a single shell session
- Signals: Messages sent to processes to control their behavior

- Daemon processes: Background services that run continuously

Job control becomes particularly important when working with long-running com-
mands or when you need to manage multiple tasks simultaneously. The ability to
suspend, resume, and background processes provides flexibility in managing your

workflow and system resources.

Environment Variables and Command
History

Environment variables store configuration information and system settings that in-
fluence how commands and programs behave. Understanding how to view, set,
and modify these variables is crucial for effective shell usage and script develop-
ment.

Display all environment variables

env

printenv
Display specific environment variable

echo S$SPATH
echo $HOME

31

echo SUSER

Set environment variable for current session
export VARIABLE_NAME="Value"

Set variable for single command execution
VARIABLE NAME="value" command

Add directory to PATH
export PATH=S$SPATH:/new/directory

Display command history

history

Execute command from history by number
1123

Execute last command
[

Execute last command starting with specific text

lgrep

Search command history interactively

Press Ctrl+R and start typing

Clear command history

history -c

Important Environment Variables:

- PATH: Directories searched for executable commands
- HOME: User's home directory path

- USER: Current username

- SHELL: Path to current shell executable

- PwD: Current working directory

- OLDPWD: Previous working directory

32

Command history provides a powerful mechanism for recalling and reusing previ-
ously executed commands. The history file, typically stored as .bash history in
your home directory, maintains a record of commands across multiple sessions.
This feature significantly improves productivity by eliminating the need to retype

complex commands.

Conclusion and Foundation for Shell
Scripting

The Linux command line represents far more than a simple text interface—it pro-
vides a comprehensive programming environment that enables sophisticated au-
tomation and system management capabilities. The commands, concepts, and
techniques covered in this chapter form the essential foundation upon which all
shell scripting knowledge builds.

Mastery of command line navigation, file operations, text processing, input/
output redirection, and process management creates the prerequisite knowledge
for effective shell script development. Each command introduced here will reap-
pear in shell scripts, often combined with others to create powerful automated so-
lutions.

The transition from interactive command line usage to shell scripting involves
organizing these individual commands into structured programs that can execute
automatically. However, the underlying principles remain identical-shell scripts
simply provide a way to store, organize, and execute sequences of command line
instructions.

As you progress through subsequent chapters, you will discover how these
fundamental command line skills translate into shell scripting constructs. Variables

will store and manipulate data, conditional statements will control script flow based

33

on command results, loops will automate repetitive tasks, and functions will orga-
nize complex operations into reusable components.

The investment in mastering these command line fundamentals pays dividends
throughout your Linux journey. Whether you are performing system administration
tasks, developing automation scripts, or troubleshooting system issues, the skills
developed in this chapter provide the tools necessary for success. The command
line's power lies not in any single command, but in the ability to combine simple
tools in creative ways to solve complex problems—a philosophy that extends direct-
ly into shell scripting and forms the foundation of the Unix philosophy that guides

Linux development.

34

